Litium Fast-Ion Conduction in Complex Hydrides

Complex hydrides can be a potential candidate for solid electrolytes for lithium ion batteries. In this study, we investigated the electrical conductivities of complex hydrides Li_2BNH_6 and $Li_4BN_3H_{10}$ consisting of $[BH_4]^-$ and $[NH_2]^-$ anions, focusing on their low melting temperatures. We also studied the localized rotational diffusion of the $[BH_4]^-$ anions in LiBH₄-Lil system.

We have reported that complex hydrides Li2BNH6 and Li₄BN₃H₁₀ consisting of [BH₄]⁻ and [NH₂]⁻ complex anions, shown in Figure 1, exhibit lithium fast-ion conductions [1]. The relatively low melting temperatures (around 360 K and 460 K for Li₂BNH₆ and Li₄BN₃H₁₀, respectively) suggest the possible enhancement of total ion conductivity in these temperature ranges. As shown in Figure 2, Li₂BNH₆ exhibits fast-ionic conductivity of 1×10^{-4} S/cm even at room temperature, which is four and five orders of magnitude higher than those of the host hydrides LiBH₄ and LiNH₂, respectively. Moreover, the conductivity increases monotonically upon heating. The activation energy for conduction decreases significantly at around 368 K from 0.66 eV (303-348 K) to 0.24 eV (above 368 K) as a result of the melting of Li₂BNH₆. The total ionic conductivity reaches 6×10^{-2} S/cm after melting at the highest temperature measured, 378 K. $Li_4BN_3H_{10}$ also shows high conductivity of 2×10^{-4} S/cm at room temperature, and the value reaches 2 × 10⁻¹ S/cm at 513 K after melting. Raman spectroscopy confirmed both the [BH4]⁻ and [NH2]⁻ complex anions remain intact within Li₂BNH₆ and Li₄BN₃H₁₀ even after melting. These results suggest that Li2BNH6 and Li4BN3H10 could be used as a new type of "ionic liquid" as well as a solid-state fast-ionic conductor [2].

We also investigated the localized rotational diffusion of the $[BH_4]^-$ complex anions in Li(BH₄)_{1-x}I_x, which shows lithium fast-ion conductivity of the order of 10^{-5} S/cm at room temperature, by means of quasielastic and inelastic neutron scattering and Raman spectroscopy to clarify the mechanism of the increased ion conductivity [3, 4]. The motions of $[BH_4]^-$ are thermally activated and characterized by activation energies in the order of 40 meV. The motion is dominated by 90 reorientations around the 4-fold symmetry axis of the tetrahedraly shaped $[BH_4]^-$ ions. As compared to the pure LiBH₄, the presence of I⁻ markedly reduces activation energies and increases the rotational frequencies by more than a factor of 100. The result suggests that the rotational motion of the translationally static $[BH_4]^-$ anions may enhance the mobility of Li^{*} ions (paddle wheel mechanism).

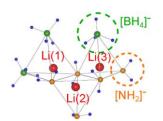


Fig. 1 Local atomistic structure of the complex hydride $Li_4BN_3H_{10}$. $Li_4(BH_4)(NH_2)_3$ have plural occupation sites for Li^+ ions with different tetrahedral coordination consisting of $[BH_4]^-$ and $[NH_2]^-$ anions

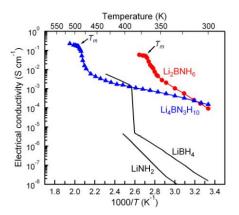


Fig. 2 Electrical conductivities of Li_2BNH_6 and $Li_4BN_3H_{10}$. The melting temperatures are indicated as T_m . For reference, the data of the host hydrides $LiBH_4$ and $LiNH_2$ are also shown.

References

M. Matsuo A. Remhof, P. Martelli, R. Caputo, M. Ernst, Y. Miura, T. Sato, H. Oguchi, H. Maekawa, H. Takamura, A. Borgschulte, A. Züttel and S. Orimo, J. Am Chem. Soc. 131, 16389 (2009).

[2] Y. Zhou, M. Matsuo, Y. Miura, H. Takamura, H. Maekawa, A. Remhof, A. Borgschulte, A. Züttel, T. Otomo and S. Orimo, Mater. Trans. 52, 654 (2011).

[3] P. Martelli, A. Remhof, A. Borgschulte, R. Ackermann, T. Strässle, J.P. Embs, M. Ernst, M. Matsuo, S. Orimo and A. Züttel, J. Phys. Chem. A 115, 5329 (2011).

 [4] A. Borgschulte, R. Gremaud, S. Kato, N.P. Stadie, A. Remhof,
A. Züttel. M. Matsuo and S. Orimo, Appl. Phys. Lett. 97, 031916 (2010).

Key Words

complex hydride, fast-ion conduction, ionic liquid

Contact to

Motoaki Matsuo (Hydrogen Functional Materials Division) E-mail: mmatsuo@imr.tohoku.ac.jp http://www.hydrogen.imr.tohoku.ac.jp/en/index.html